HIGHLIGHTS

~

SOLUTION TO ALL QUESTIONS

- ✓ SOLUTIONS ARE PUT IN WAY THE STUDENT IS EXPECTED TO REPRODUCE IN THE BOARD EXAM
- ✓ TAUGHT IN THE CLASS ROOM THE SAME WAY AS THE SOLUTION ARE PUT UP HERE . THAT MAKES THE STUDENT TO EASILY GO THROUGH THE SOLUTION & PREPARE HIM/HERSELF WHEN HE/SHE SITS BACK TO REVISE AND RECALL THE TOPIC AT ANY GIVEN POINT OF TIME .
- ✓ LASTLY, IF STUDENT DUE TO SOME UNAVOIDABLE REASONS , HAS MISSED THE LECTURE , WILL NOT HAVE TO RUN HERE AND THERE TO UPDATE HIS/HER NOTES .
- HOWEVER STUDENT IS REQUESTED NOT TO MISUSE THE ABOVE POINT AS CLASS ROOM LECTURES ARE MUST FOR EASY PASSAGE OF UNDERSTANDING & LEARNING THE MINUEST DETAILS OF THE GIVEN TOPIC

<u>paper - II</u> SEQUENCING

SEQUENCING

N – JOBS ON 2 MACHINES

Q1. Find the sequence that minimizes total elapsed time (in hours) required to complete the following jobs on two machines M1 and M2 in the order M1M2. Also find the minimum elapsed time and idle time for two machines

01	Job	А	В	С	D	Е
	M 1	6	2	10	4	11
	M ₂	3	7	8	9	5

Step 1 : Finding the optimal sequence

Min time

= 2 on job B on machine M1. Place the job at the start of the sequence

Next min time = 3 on job A on machine M_2 . Place the job at the end of the sequence

Next min time = 4 on job D on machine M1. Place it at the start of the sequence after B

Next min time = 5 on job E on machine M₂. Place it at the end of the sequence before A

OPTIMAL SEQUENCE

Step 2 : Work table

According to the optimal sequence

Jop	В	D	С	Е	А	total process time	
M1	2	4	10	11	6	=	33 hrs
M ₂	7	9	8	5	3	=	32 hrs

	N	\ 1	M	2	Idle time
JOBS	IN	OUT	IN	OUT	on M₂
В	0	2	2	9	2
D	2	6	9	18	
С	6	16	18	26	1
E	16	27	27	32	
А	27	33	33	36	

WORK TABLE

Step 3 :

Total elapsed time T = 36 hrs Idle time on $M_1 = T - (sum of processing time of all jobs on M1)$ = 36 - 33 = 3 hrs Idle time on $M_2 = T - (sum of processing time of all jobs on M2)$ = 36 - 32= 4 hr (CHECK : 2 + 1 + 1 = 4)

02	•	Jop	А	В	С	D	E	(MARCH 14 , OCT 14)
		M 1	5	1	9	3	10	
		M ₂	2	6	7	8	4	

Step 1 : Finding the optimal sequence

Min time = 1 on job B on machine M1. Place the job at the start of the sequence

Next min time = 2 on job A on machine M_2 . Place the job at the end of the sequence

Next min time = 3 on job D on machine M₁. Place it at the start of the sequence after B

Next min time = 4 on job E on machine M₂. Place it at the end of the sequence before A

OPTIMAL SEQUENCE

Step 2 : Work table

According to the optimal sequence

Job	В	D	С	E	А	total process time	
M ₁	1	3	9	10	5	=	28 hrs
M ₂	6	8	7	4	2	=	27 hrs

	N	\ 1	M	2	Idle time
JOBS	IN	OUT	IN	OUT	on M₂
В	0	1	1	7	1
D	1	4	7	15	
С	4	13	15	22	1
E	13	23	23	27	1
A	23	28	28	30	

WORK TABLE

Step 3 :

Total elapsed time T = 30 hrsIdle time on $M_1 = T - (\text{sum of processing time of all jobs on } M_1)$ = 30 - 28= 2 hrs

Idle time on M₂ = T - $\left(\text{sum of processing time of all jobs on M2} \right)$ = 30 - 27 = 3 hrs (CHECK : 1 + 1 + 1 = 3) Q2. The time (in hours) required to perform printing and binding operation (in that order) for each book is given in the following table (MARCH 2014)

0		0			•	-
Book	Ι	II	III	IV	V	
Printing M1	3	7	4	5	7	1.S
Binding M ₂	6	2	7	3	4	-Nr

Find the sequence that minimizes the total elapsed time to complete the work . Also find the minimum elapsed time T and idle time for two machines

Step 1 : Finding the optimal sequence

Min time = 2 on job II on machine M₂. Place the job at the end of the sequence

Next min time = 3 on job I on machine M1 & on job IV on machine M2 . Place the job I at the start of the sequence & job IV at the end of the sequence before II

Next min time = 4 on job III on machine M1 & on job V on machine M2 . Place the job III at the start of the sequence after I & job V at the end of the sequence before IV

I III	v	IV	II
-------	---	----	----

OPTIMAL SEQUENCE

I	III	V	IV	II
---	-----	---	----	----

Step 2 : Work table

According to the optimal sequence

Job	Ι	III	V	IV	Π	total process time	
M1	3	4	7	5	7	=	26 hrs
M ₂	6	7	4	3	2	=	22 hrs

WORK TABLE

		MACH			
	N	N 1	M	2	Idle time
JOBS	IN	OUT	IN	OUT	on M₂
I	0	3	3	9	3
III	3	7	9	16	
v	7	14	16	20	
IV	14	19	20	23	3
II	19	26	26	28	

Step 3 :

Total elapsed time T = 28 hrs Idle time on $M_1 = T - (sum of processing time of all jobs on M1)$ = 28 - 26= 2 hrs

Idle time on M₂ = T - (sum of processing time of all jobs on M₂) = 28 - 22 = 6 hrs (CHECK : 3 + 3 = 6) Q3. Find the sequence that minimizes total elapsed time (in hours) required to complete the following jobs on two machines M1 and M2 in the order M1M2. Also find the minimum elapsed time and idle time for two machines

Job	А	В	С	D	Е	F
M1	5	9	4	7	8	6
M ₂	7	4	8	3	9	5

Step 1 : Finding the optimal sequence

Min time = 3 on job D on machine M₂. Place the job at the end of the sequence

Next min time = 4 on job B on machine M₂ & on job C on machine M₁. Place the job B at the end of the sequence before D & job C at the start of the sequence sequence

C B D

Next min time = 4 on job A on machine M1 & on job F on machine M2 . Place the job A at the start of the sequence after C & job F at the end of the sequence before B

СА	F	В	D
----	---	---	---

OPTIMAL SEQUENCE

Step 2 : Work table

According to the optimal sequence

Jop	С	А	Е	F	В	D	total	process time
M1	4	5	8	6	9	7	=	39 hrs
M ₂	8	7	9	5	4	3	=	36 hrs

WC	RK	ΤA	BL	E
----	----	----	----	---

		MACH			
	N N	N 1	M2		ldle time
JOBS	IN	OUT	IN	OUT	on M₂
С	0	4	4	12	4
A	4	9	12	19	
E	9	17	19	28	
F	17	23	28	33	
В	23	32	33	37	
D	32	39	39	42	2

Step 3 :

Total elapsed time T = 42 hrs Idle time on $M_1 = T - (sum of processing time of all jobs on M1)$ = 42 - 39= 3 hrs

Idle time on M₂ = T - (sum of processing time of all jobs on M₂) = 42 - 36 = 6 hrs (CHECK : 4 + 2 = 6) Q4. A book binder has one printing press, one binding machine and the manuscripts of a number of books. The time required to perform the printing and binding operations for each book are given below. Determine the order in which books should be processed in order to minimize the total time required to turn out all the books. Also find the idle time for both the machines

							\sim
Jobs		1	2	3	4	5	6
Machine	А	30	120	50	20	90	110
Machine	В	80	100	90	60	30	10

Step 1 : Finding the optimal sequence

Min time = 10 on job 6 on machine B. Place the job at the end of the sequence

Next Min time = 20 on job 4 on machine A . Place the job at the end of the sequence

Next min time = 30 on job 1 on machine A & on job 5 on machine B . Place the job 1 at the start of the sequence after 4 & job 5 at the end of the sequence before 6

Next min time = 50 on job 3 on machine A. Place the job at the start of the sequence after 1

4 1 3	5	6
-------	---	---

OPTIMAL SEQUENCE

Step 2 : Work table

According to the optimal sequence

Jop	4	1	3	2	5	6	total pro	cess time
M1	20	30	50	120	90	110	=	420
M ₂	60	80	90	100	30	10	=	370

	N	A 1	M	2	Idle time
JOBS	IN	OUT	IN	OUT	on M₂
4	0	20	20	80	20
1	20	50	80	160	
3	50	100	160	250	
2	100	220	250	350	
5	220	310	350	380	40
6	310	420	420	430	40

WORK TABLE

Step 3 :

Total elapsed time T = 430 units

Idle time on $M_1 = T - (sum of processing time of all jobs on M1)$ = 430 - 420 = 10 units

Idle time on $M_2 = T - (sum of processing time of all jobs on M2)$ = 430 - 370 = 60 units (CHECK : 20 + 40 = 60)

Q5. In a factory there are six jobs to be performed, each of which should go through machines A and B in the order A – B. Determine the sequence for performing the jobs that would minimize the total elapsed time T. Find T and the idle time on the two machines (OCT 2014)

Step 1 : Finding the optimal sequence

Min time = 1 on job J₁ on machine M_A. Place the job at the start of the sequence

Next min time= 2 on jobs J4 & J5 on machine MB. Place the jobs at the end of the sequence randomly

Placed Randomly

Next min time = 3 on jobs J2 & J6 on machine MA and on job J3 on machine MB respectively. Place J2 & J6 at the start next to J1 randomly and J3 at the end before J4

Placed Randomly

OPTIMAL SEQUENCE

Jı	J2	۶L	73	J4	J 5
----	----	----	----	----	-----

Step 2 : Work table

According to the optimal sequence

Jop	J1	J2	۶L	13	J4	J 5	total	process time
MA	1	3	3	8	5	6	=	26 hrs
Мв	5	6	10	3	2	2	=	28 hrs

		мас	CHINES		
	N	١٨	M	3	ldle time
JOBS	IN	OUT	IN	OUT	on MB
Jı	0	1	1	6	1
J2	1	4	6	12	
٦۶	4	7	12	22	
J3	7	15	22	25	
J4	15	20	25	27	
J5	20	26	27	29	

WORK TABLE

Step 3 :

Total elapsed time T = 29 hrs Idle time on MA = T - (sum of processing time of all 6 jobs on M1)= 29 - 26 = 3 hrs Idle time on MB = T - (sum of processing time of all 6 jobs on M2)= 29 - 28 = 1 hr

Step 4 : All possible optimal sequences :

 $J_{1} - J_{2} - J_{6} - J_{3} - J_{4} - J_{5}$ OR $J_{1} - J_{6} - J_{2} - J_{3} - J_{4} - J_{5}$ OR $J_{1} - J_{2} - J_{6} - J_{3} - J_{5} - J_{4}$ OR $J_{1} - J_{6} - J_{2} - J_{3} - J_{5} - J_{4}$

Q6. We have seven jobs each of which has to go through the machines M_1 and M_2 in the order M_1M_2 . Processing time in hours are given below

Jobs	1	2	3	4	5	6	7
M1	3	12	15	6	10	11	9
M ₂	8	10	10	6	12	1	3

Determine a sequence of these jobs that will minimize the total elapsed T , idle time for machine M_1 and idle time for Machine M_2 (MARCH 2017)

Step 1 : Finding the optimal sequence

Min time = 1 on job 6 on machine M₂. Place the job at the end of the sequence

Next min time= 3 on job 1 on machine M1 & on job 7 on machine M2. Place job 1 at the start of the sequence and job 7 at the end of the sequence before job 1

Next min time= 6 on job 4 on machine M_1 & M_2 . Place job 4 at the start of the sequence after job 1

Next min time = 10 on jobs 2 & 3 on machine M₂ and on job 5 on machine M₁ respectively. Place 2 & 3 at the end of the sequence randomly before job 7. and job 5 at the start of the sequence after 1

Placed Randomly

OPTIMAL SEQUENCE

Step 2 : Work table

According to the optimal sequence

Job	1	4	5	2	3	7	6	total process time		•
M 1	3	6	10	12	15	9	11	=	66 hrs	-
M2	8	6	12	10	10	3	1	=	50 hrs	

	N	Idle time			
JOBS	IN	OUT	IN	OUT	on M₂
1	0	3	3	11	3
4	3	9	11	17	2
5	9	19	19	31	2
2	19	31	31	41	5
3	31	46	46	56	
7	46	55	56	59	7
6	55	66	66	67	, ,

WORK TABLE

Step 3 :

Total elapsed time T = 67 hrs Idle time on $M_1 = T - (sum of processing time of all jobs on M1)$ = 67 - 66 = 1 hrs

Idle time on $M_2 = T - \left(\text{sum of processing time of all jobs on } M_2 \right)$ = 67 - 50 = 17 hrs (CHECK : 3 + 2 + 5 + 7 = 17)

SEQUENCING

N – JOBS ON 3 MACHINES

Q1. Find the sequence that minimizes total elapsed time (in hours) required to complete the following jobs on three machines M1, M2 and M3 in the order M1-M2-M3. Also find the minimum elapsed time and idle time for all three machines

Job	A	В	С	D	E
M1	5	7	6	9	5
M ₂	2	1	4	5	3
Мз	3	7	5	6	7

STEP 1 : Min time on $M_1 = 5$; Max time on $M_2 = 5$ Min time on $M_3 = 3$

Min (M1) \geq Max (M2) condition satisfied to convert 3 m/c's to 2 m/c's

STEP 2 : CONVERTING TO 2 FICTITIOUS M/C'S G & H

G	=	M 1	+	M2			
Н	=	M2	+	M3			
	Job	А		В	С	D	E
	G	7		8	10	14	8
	Н	5		8	9	11	10

STEP 3 : OPTIMAL SEQUENCE

Min time = 5 on job A on machine H . Place the job at the end of the sequence

Next min time = 8 on job B & E on machine G. Place them randomly at the start of the sequence

Next min time = 9 on job C on machine H . Place it at the end of the sequence before A

OPTIMAL SEQUENCE

В	E	D	с	Α

STEP 4 : WORK TABLE

Job	В	E	D	С	А	total process time		
M1	7	5	9	6	5	=	32 hrs	
M ₂	1	3	5	4	2	=	15 hrs	
M3	7	7	6	5	3	=	28 hrs	

JOBS	/	M 1	IDLE	N	12	IDLE	M3		IDLE
	IN	Ουτ	TIME	IN	OUT	TIME	IN	Ουτ	TIME
						7			8
В	0	7		7	8	4	8	15	
E	7	12		12	15	6	15	22	4
D	12	21		21	26	1	26	32	
С	21	27		27	31	1	32	37	
А	27	32	8	32	34	6	37	40	

STEP 5 : Total elapsed time T = 40 hrs

Idle time on M₁ = T -
$$\left(sum of processing time of all 5 jobs on M1 \right)$$

= 40 - 32
= 8 hrs

Idle time on M₂ = T - $\left(sum \text{ of processing time of all 5 jobs on M2}\right)$ = 40 - 15 = 25 hrs (CHECK - 7 + 4 + 6 + 1 + 1 + 6 = 25) Idle time on M₃ = T - $\left(sum \text{ of processing time of all 5 jobs on M3}\right)$ = 40 - 28 = 12 hrs (CHECK - 8 + 4 = 12) Q2. 1. There are five jobs, each of which is to be processed through three machines A, B and C in the order ABC . Processing time in hours are shown in the following table .Determine the optimal sequence for the five jobs and the minimum elapsed time . Also find the idle time for HOMEN C three machines

Job	1	2	3	4	5
А	3	8	7	5	2
В	3	4	2	1	5
С	5	8	10	7	6

STEP 1 : Min time on m/c A = 2; Max time on m/c B = 5

 $Min (m/c C) \ge Max (m/c B)$

- Min time on m/c C = 5 condition satisfied to convert 3 m/c's to 2 m/c's
- STEP 2 : CONVERTING TO 2 FICTITIOUS M/C'S G & H

G	=	А	+	В				
Н	=	В	+	С				
	Jc	b		1	2	3	4	5
	G			6	12	9	6	7
	Н			8	12	12	8	11

STEP 3 : OPTIMAL SEQUENCE

Min time = 6 on job 1 & 4 on machine G. Place them RANDOMLY at the start of the sequence

Next min time = 7 on job 5 on machine H. Place it at the end of the sequence

Next min time = 9 on job 3 on machine G. Place it at the start of the sequence after 5

OPTIMAL SEQUENCE

STEP 4 : WORK TABLE

TOTAL PROCESSING

Job	1	4	5	3	2		TIME
A	3	5	2	7	8	=	25 HRS
В	3	1	5	2	4	=	15 HRS
С	5	7	6	10	8	=	36 HRS

JOBS	M/c A		IDLE	M/c B		IDLE	M/c C		IDLE
	IN	OUT	TIME	IN	OUT	TIME	IN	Ουτ	TIME
						3			6
1	0	3		3	6	2	6	11	
4	3	8		8	9	1	11	18	
5	8	10		10	15	2	18	24	
3	10	17		17	19	6	24	34	
2	17	25	17	25	29	13	34	42	

STEP 5 : Total elapsed time T = 42 hrs

Idle time on M/C A = T - $\left(sum of processing time of all 5 jobs on M/C A \right)$ = 42 - 25 = 17 hrs Idle time on M/C B = T - $\left(sum of processing time of all 5 jobs on M/C B \right)$ = 42 - 15 = 27 hrs (CHECK - 3 + 2 + 1 + 2 + 6 + 13 = 27) Idle time on M/C C = T - $\left(sum of processing time of all 5 jobs on M/C C \right)$ = 42 - 36 = 6 hrs Q2. 2. There are five jobs, each of which is to be processed through three machines A, B and C in the order ABC. Processing time in hours are shown in the following table. Determine the optimal sequence for the five jobs and the minimum elapsed time. Also find the idle time for three machines

Jop	1	2	3	4	5
A	3	8	7	5	4
В	4	5	1	2	3
С	7	9	5	6	10

STEP 1 : Min time on m/c A = 3 ; Max time on m/c B = 5 Min (m/c C) ≥ Max (m/c B) Min time on m/c C = 5 condition satisfied to convert 3 m/c's to 2 m/c's

STEP 2 : CONVERTING TO 2 FICTITIOUS M/C'S G & H

G	=	А	+	В				
Н	=	В	+	С				
	Job		1		2	3	4	
	G		7		13	8	7	
	Н		11		14	6	8	

STEP 3 : OPTIMAL SEQUENCE

Min time = 6 on job 3 on machine H . Place the job at the end of the sequence

5 _____7

13

Next min time = 7 on jobs 1, 4 & 5 on machine G. Place them randomly at the start of the sequence

RANDOM

OPTIMAL SEQUENCE

STEP 4 : WORK TABLE

TOTAL PROCESSING

Job	1	4	5	2	3		TIME
А	3	5	4	8	7	=	27 hrs
В	4	2	3	5	1	=	15 hrs
С	7	6	10	9	5	=	37 hrs

JOBS	M/c A		IDLE	M/c B		IDLE	M/c C		IDLE
	IN	ουτ	TIME	IN	OUT	TIME	IN	Ουτ	TIME
						3			7
1	0	3		3	7	1	7	14	
4	3	8		8	10	2	14	20	
5	8	12		12	15	5	20	30	
2	12	20		20	25	2	30	39	
3	20	27	17	27	28	16	39	44	

STEP 5 : Total elapsed time T = 44 hrs

Idle time on M/C A = T -
$$\left(\text{sum of processing time of all 5 jobs on M/C A} \right)$$

= 44 - 27
= 17 hrs
Idle time on M/C B = T - $\left(\text{sum of processing time of all 5 jobs on M/C B} \right)$
= 44 - 15
= 29 hrs (CHECK - 3 + 1 + 2 + 5 + 2 + 16 = 29)
Idle time on M/C C = T - $\left(\text{sum of processing time of all 5 jobs on M/C C} \right)$
= 44 - 37
= 7 hrs

Q3. Determine the optimal sequence involving 5 jobs and three machines M_1 , M_2 and M_3 . The jobs are processed on three machines in the order M1M2M3. Also find the minimum total HOMEWORK elapsed time T and idle time for three machines . Processing time in minutes are

Job	Jı	J2	J3	J4	J5
M1	7	12	11	9	8
M ₂	8	9	5	6	7
Мз	11	13	9	10	14

STEP 1 : Min time on $M_1 = 7$; Max time on $M_2 = 9$ Min time on $M_3 = 9$ Min (M3) \geq Max (M2) condition satisfied to convert 3 m/c's to 2 m/c's

STEP 2 : CONVERTING TO 2 FICTITIOUS M/C'S G & H

G	=	Μı	+	M ₂				
Η	=	M2	+	Мз				
	Jo	b	Jı		J2	J3	J4	J5
-	G		15		21	16	15	15
	Н		19		22	14	16	21

STEP 3 : OPTIMAL SEQUENCE

Min time = 14 on job J3 on machine H . Place the job at the end of the sequence

Next min time = 15 on job J1 , J4 & J5 on machine G . Place them randomly at the start of the sequence

OPTIMAL SEQUENCE

J1 J4	J5	J2	J3
-------	----	----	----

Job	Jı	J4	J5	J2	J3		total processing time
Mı	7	9	8	12	11	=	47 min
M ₂	8	6	7	9	5	=	35 min
Мз	11	10	14	13	9	=	57 min

JOBS	^	M 1	IDLE	N	۱2	IDLE	٨	٨3	IDLE
	IN	OUT	TIME	IN	OUT	TIME	IN	Ουτ	TIME
						7			15
Jı	0	7		7	15	1	15	26	
J4	7	16		16	22	2	26	36	
J5	16	24		24	31	5	36	50	
J2	24	36		36	45	2	50	63	
J3	36	47	25	47	52	20	63	72	

STEP 5 : Total elapsed time T = 72 min Idle time on M1 = T - $\left(\text{sum of processing time of all 5 jobs on M1} \right)$ = 72 - 47 = 25 min Idle time on M2 = T - $\left(\text{sum of processing time of all 5 jobs on M2} \right)$ = 72 - 35 = 37 min (CHECK - 7 + 1 + 2 + 5 + 2 + 20 = 37) Idle time on M3 = T - $\left(\text{sum of processing time of all 5 jobs on M3} \right)$ = 72 - 57 = 15 min

NOTE : ALL POSSIBLE OPTIMAL SEQUENCES

i) $J_1 - J_4 - J_5 - J_2 - J_3$ ii) $J_1 - J_5 - J_4 - J_2 - J_3$ iii) $J_4 - J_1 - J_5 - J_2 - J_3$ iv) $J_4 - J_5 - J_1 - J_2 - J_3$ v) $J_5 - J_1 - J_4 - J_2 - J_3$ vi) $J_5 - J_4 - J_4 - J_2 - J_3$

However there are 6 possible different optimal sequences but the total elapsed time T and the idle time on all three m/c's will remain the same

Q4. A machine operator has to perform three operations : turning , threading and finishing on 6 different jobs . The time required to perform these operations (in minutes) for each job is given below . Determine the order in which the jobs should be processed in order to minimize the total time required to complete all the jobs . Also find the idle time three operation

Jobs	1	2	3	4	5	6
Turning	3	12	5	2	9	11
Threading	8	6	4	6	3	1
Finishing	13	14	9	12	8	13

STEP 1 : Min time on Turning (m/c A) = 2 ;Max time on Threading(m/c B) = 8Min time on Fininshing (m/c C) = 8Min (m/c C) \geq Max (m/c B)

STEP 2 : CONVERTING TO 2 FICTITIOUS M/C'S G & H

G	=	А	+	В
Н	=	В	+	С

Jop	1	2	3	4	5	6
G	11	18	9	8	12	12
Н	21	20	13	18	11	14

STEP 3 : OPTIMAL SEQUENCE

Min time = 8 on job 4 on machine G. Place the job at the start of the sequence

Next min time = 9 on job 3 on machine G. Place it at start of sequence after 4

Next min time = 11 on job 1 on G $_{\&$ on job 5 on H . Place job 1 at start of sequence after 3 and job 5 at the end of the sequence

4	3	1			5
---	---	---	--	--	---

Next min time = 12 on job 6 on machine G. Place it at start of sequence after 1

4	1	6		5
---	---	---	--	---

OPTIMAL SEQUENCE

4 3 1	6	2	5
-------	---	---	---

STEP 4 : WORK TABLE

	JOBS				TOTAL PROCESSING			
M/c	4	3	1	6	2	5	TIME	
CUTTING	2	5	3	11	12	9	= 42 min	
THREADING	6	4	8	1	6	3	= 28 min	
FINISHING	12	9	13	13	14	8	= 69 min	

JOBS	CUI	TING	IDLE	THREADING		IDLE	IDLE FINISHING		IDLE
	IN	Ουτ	TIME	IN	ουτ	TIME	IN	Ουτ	TIME
						2			8
4	0	2		2	8		8	20	
3	2	7		8	12		20	29	
1	7	10		12	20	1	29	42	
6	10	21		21	22	11	42	55	
2	21	33		33	39	3	55	69	
5	33	42	35	42	45	32	69	77	

STEP 5 : Total elapsed time T = 77 min Idle time on CUTTING = T - $\left(\text{sum of processing time of all 5 jobs on M/c A} \right)$ = 77 - 42 = 35 min Idle time on THREADING = T - $\left(\text{sum of processing time of all 5 jobs on M/c B} \right)$ = 77 - 28 = 49 min (CHECK - 2 + 1 + 11 + 3 + 32 = 49) Idle time on FINISHING = T - $\left(\text{sum of processing time of all 5 jobs on M/c C} \right)$ = 77 - 69 = 8 min